Chapter 7.1A part 1

Group Theory
Section 7.1 A
Recall: Ring is a set with two operations
Def Group is a non-empty set G equipped with a binary operation * that satisfies

1. For $a \in G, b \in G$, we have $a * b \in G \quad\{$ binary operation
2. $a *(b * c)=(a * b) \times c$
we can write \} associativity $a_{*} b_{*} c$ without parenthesis
3. There is $e \in G$ (identity element) such that $\{$ analog of

$$
e * a=a * e=a \quad \text { for every } a \in G
$$

4. For each $a \in G$, there is $d \in G$ such that

$$
a * d=d * a=e
$$ 1 for multiplication in rings

$\left\{\begin{array}{l}\text { inverse of } a \\ \text { Notation: } a^{-1}\end{array}\right.$
5. A group is called abelian if we have $a \times b=b_{0} \times a$ for every $a, b \in G$
non-abelian otherwise

Finite group G means the set G is finite ξ ofternise-infintite group (a group of finite order) infinite order
The order of a groups - the averunt of elements in the set G
Examples of groups
Ley - the set of one element | Finite abelian group of order one $e \times e=e$
D. - set of integers - group with respect to addition - infinite abelian group
The. 1 If R is a ring, then R is an abelian group with respect to addition.
O_{R} - the identity
With the exception of zero ring $\left\{O_{R}\right\}$,
a ring is not a group with respect to the multiplication.
The obstacle is $O_{R} \in R$ which is never invertible
Th 7,2 If R is a field, then $R^{*}=R \backslash\left\{O_{R} Y\right.$ is an abelian group with respect to multiplication (iff statement)

$$
e=l_{R} \text { - the identity }
$$

Although $\nabla_{l}^{*}=\nabla_{厶}$ hoy is not a group w.r.t. multiplication, $41,-1 y$ is a group finite group of order 2 .
Th 7.3 For a ring R with identity $\left.\right|_{R} \in R$, the set of units of R is a group with respect to mertiplieation

In this way $\mathbb{C}^{*}, \mathbb{R}^{*}, \nabla_{p}^{*}$ - abelian groups p-prime
Examples: $Q^{* *}$ - positive rational numbers with respect to multiplication
$\mathbb{R}^{* *}$ real \qquad 1.

Example Il $\{1,-1, i,-i\} \subset \mathbb{C}$ is a group of order t with respect to multiplication (as complex numbers)

