## Chapter 7.1A part 1

## Ykoup Theory

Section 7.1A

Recall: Ring is a set with two operations

Def Yroup is a non-empty set G equipped with a binary operation \*
That satisfies

- } Bruary operation 1. For aEG, BEB, we have axbEG

2. a\*(b\*c) = (a\*b)\*cNote can write a\*b\*c without parenthesis

3. There is  $e \in G$  (identity element) such that 3 and e\*a = a\*e = a for every  $a \in G$ 

4. For each a EG, there is de G such that

a\*d=d\*a=e

5. A group is called abelian if we have axb=bxa for every a, b ∈ G

analog of o for addition of for multiplication in Villags inverse of a Notation: a

} nou-abelian
} otherwise

} associativity

3 otherwise - infinite Finite group & means the set G is finite (a group of fivite order) infinite order The order of a group &- the amount of elements \ Notation: (G) Examples of groups Finite abelian group of order one hez - the set of one exement exe=e 12 - set of integers - group with respect to addition - infinite abelian group Th7.1 If R is a ring, then R is an abelian group with respect to addition. Op - the identity With the exception of zero ring hopy. a king is not a group with respect to the multiplication. The obstacle is ORER which is never invertible Th Fil If R is a field, then R' = R\hoRy is an abelian group with respect to multiplication e= lR - the identity (iff statement)

| Although 12t = 12/hog is not a group w.r.t. multiplication,                                            |
|--------------------------------------------------------------------------------------------------------|
| 41,-19 is a group of order 2.                                                                          |
| Th 7.3 For a ring R with identity RER, the set of units of R is a group with respect to multiplication |
| In this way C*, R*, Zp - abelian groups P-prime                                                        |
| Examples: Q** - positive rational numbers with respect to multiplication e=                            |
| R** real                                                                                               |

Example 11 /1, -1, i, -i & C ( is a group of order H

With respect to multiplication

(as complex numbers)